Go to JCI Insight
Jci spelled out white on transparent.20160208
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • Fibrosis (Jan 2018)
    • Glia and Neurodegeneration (Sep 2017)
    • Transplantation (Jun 2017)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

Jci only white

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication

Immunology

  • 739 Articles
  • 3 Posts
  • ←
  • 1
  • 2
  • 3
  • …
  • 73
  • 74
  • →
Reduced expression of phosphatase PTPN2 promotes pathogenic conversion of Tregs in autoimmunity
Mattias N.D. Svensson, … , Pandurangan Vijayanand, Nunzio Bottini
Mattias N.D. Svensson, … , Pandurangan Vijayanand, Nunzio Bottini
Published January 8, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI123267.
View: Text | PDF

Reduced expression of phosphatase PTPN2 promotes pathogenic conversion of Tregs in autoimmunity

  • Text
  • PDF
Abstract

Genetic variants at the PTPN2 locus, which encodes the tyrosine phosphatase PTPN2, cause reduced gene expression and are linked to rheumatoid arthritis (RA) and other autoimmune diseases. PTPN2 inhibits signaling through the T cell and cytokine receptors and loss of PTPN2 promotes T cell expansion and CD4 and CD8-driven autoimmunity. However, it remains unknown whether loss of PTPN2 in FoxP3+ regulatory T cells (Treg) plays a role in autoimmunity. Here we aimed to model human autoimmune-predisposing PTPN2 variants, which results in a partial loss of PTPN2 expression, in mouse models of RA. We identified that reduced expression of Ptpn2 enhanced the severity of autoimmune arthritis in the T cell dependent SKG mouse model and demonstrated that this phenotype was mediated through a Treg-intrinsic mechanism. Mechanistically, we found that through dephosphorylation of STAT3, Ptpn2 inhibits IL-6-driven pathogenic loss of FoxP3 after Tregs have acquired RORγt expression, at a stage when chromatin accessibility for STAT3-targeted IL-17 associated transcription factors is maximized. We conclude that PTPN2 promotes FoxP3 stability in mouse RORγt+ Tregs and that loss of function of PTPN2 in Tregs contributes to the association between PTPN2 and autoimmunity.

Authors

Mattias N.D. Svensson, Karen M. Doody, Benjamin J. Schmiedel, Sourya Bhattacharyya, Bharat Panwar, Florian Wiede, Shen Yang, Eugenio Santelli, Dennis J. Wu, Cristiano Sacchetti, Ravindra Gujar, Grégory Seumois, William B. Kiosses, Isabelle Aubry, Gisen Kim, Piotr Mydel, Shimon Sakaguchi, Mitchell Kronenberg, Tony Tiganis, Michel L. Tremblay, Ferhat Ay, Pandurangan Vijayanand, Nunzio Bottini

×

Bronchus-associated lymphoid tissue–resident Foxp3+ T lymphocytes prevent antibody-mediated lung rejection
Wenjun Li, … , Andrew E. Gelman, Daniel Kreisel
Wenjun Li, … , Andrew E. Gelman, Daniel Kreisel
Published December 18, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI122083.
View: Text | PDF

Bronchus-associated lymphoid tissue–resident Foxp3+ T lymphocytes prevent antibody-mediated lung rejection

  • Text
  • PDF
Abstract

Antibody-mediated rejection (AMR) is a principal cause of acute and chronic failure of lung allografts. However, mechanisms mediating this oftentimes fatal complication are poorly understood. Here, we show that Foxp3+ T cells formed aggregates in rejection-free human lung grafts and accumulated within induced bronchus-associated lymphoid tissue (BALT) of tolerant mouse lungs. Using a retransplantation model, we show that selective depletion of graft-resident Foxp3+ T lymphocytes resulted in the generation of donor-specific antibodies (DSA) and AMR, which was associated with complement deposition and destruction of airway epithelium. AMR was dependent on graft infiltration by B and T cells. Depletion of graft-resident Foxp3+ T lymphocytes resulted in prolonged interactions between B and CD4+ T cells within transplanted lungs, which was dependent on CXCR5-CXCL13. Blockade of CXCL13 as well as inhibition of the CD40 ligand and the ICOS ligand suppressed DSA production and prevented AMR. Thus, we have shown that regulatory Foxp3+ T cells residing within BALT of tolerant pulmonary allografts function to suppress B cell activation, a finding that challenges the prevailing view that regulation of humoral responses occurs peripherally. As pulmonary AMR is largely refractory to current immunosuppression, our findings provide a platform for developing therapies that target local immune responses.

Authors

Wenjun Li, Jason M. Gauthier, Ryuji Higashikubo, Hsi-Min Hsiao, Satona Tanaka, Linh Vuong, Jon H. Ritter, Alice Y. Tong, Brian W. Wong, Ramsey R. Hachem, Varun Puri, Ankit Bharat, Alexander S. Krupnick, Chyi S. Hsieh, William M. Baldwin III, Francine L. Kelly, Scott M. Palmer, Andrew E. Gelman, Daniel Kreisel

×

Immune synapses between mast cells and γδ T cells limit viral infection
Chinmay Kumar Mantri, Ashley L. St. John
Chinmay Kumar Mantri, Ashley L. St. John
Published December 18, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI122530.
View: Text | PDF

Immune synapses between mast cells and γδ T cells limit viral infection

  • Text
  • PDF
Abstract

Mast cells (MCs) are immune sentinels but whether they also function as antigen-presenting cells (APCs) remains elusive. Using mouse models of MC-deficiency, we report MC-dependent recruitment and activation of multiple T cell subsets to the skin and draining lymph nodes (LNs) during dengue virus (DENV) infection. Newly-recruited and locally-proliferating γδT cells were the first responding T cell subset to MC-driven inflammation and their production of IFN-γ was MC-dependent. MC-γδ T cell conjugates were observed consistently in infected peripheral tissues, suggesting a new role for MCs as non-conventional APCs for γδT cells. MC-dependent γδT cell activation and proliferation during DENV infection required TCR signaling and the non-conventional antigen presentation molecule EPCR on MCs. γδT cells, not previously implicated in DENV host defense, killed infected target dendritic cells and contributed to clearance of DENV in vivo. We believe immune synapse formation between MCs and γδT cells is a novel mechanism to induce specific and protective immunity at sites of viral infection.

Authors

Chinmay Kumar Mantri, Ashley L. St. John

×

Effective NY-ESO-1–specific MHC II–restricted T cell receptors from antigen-negative hosts enhance tumor regression
Lucia Poncette, … , Felix K.M. Lorenz, Thomas Blankenstein
Lucia Poncette, … , Felix K.M. Lorenz, Thomas Blankenstein
Published December 10, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI120391.
View: Text | PDF

Effective NY-ESO-1–specific MHC II–restricted T cell receptors from antigen-negative hosts enhance tumor regression

  • Text
  • PDF
Abstract

Adoptive transfer of T cell receptor–engineered (TCR-engineered) T cells is a promising approach in cancer therapy but needs improvement for more effective treatment of solid tumors. While most clinical approaches have focused on CD8+ T cells, the importance of CD4+ T cells in mediating tumor regression has become apparent. Regarding shared (self) tumor antigens, it is unclear whether the human CD4+ T cell repertoire has been shaped by tolerance mechanisms and lacks highly functional TCRs suitable for therapy. Here, TCRs against the tumor-associated antigen NY-ESO-1 were isolated either from human CD4+ T cells or from mice that express a diverse human TCR repertoire with HLA-DRA/DRB1*0401 restriction and are NY-ESO-1 negative. NY-ESO-1–reactive TCRs from the mice showed superior recognition of tumor cells and higher functional activity compared with TCRs from humans. We identified a candidate TCR, TCR-3598_2, which was expressed in CD4+ T cells and caused tumor regression in combination with NY-ESO-1–redirected CD8+ T cells in a mouse model of adoptive T cell therapy. These data suggest that MHC II–restricted TCRs against NY-ESO-1 from a nontolerant nonhuman host are of optimal affinity and that the combined use of MHC I– and II–restricted TCRs against NY-ESO-1 can make adoptive T cell therapy more effective.

Authors

Lucia Poncette, Xiaojing Chen, Felix K.M. Lorenz, Thomas Blankenstein

×

Tumor-conditional anti-CTLA4 uncouples antitumor efficacy from immunotherapy-related toxicity
Chien-Chun Steven Pai, … , Gillian Kingsbury, Lawrence Fong
Chien-Chun Steven Pai, … , Gillian Kingsbury, Lawrence Fong
Published December 10, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI123391.
View: Text | PDF

Tumor-conditional anti-CTLA4 uncouples antitumor efficacy from immunotherapy-related toxicity

  • Text
  • PDF
Abstract

While immune checkpoint blockade leads to potent antitumor efficacy, it also leads to immune-related adverse events in cancer patients. These toxicities stem from systemic immune activation resulting in inflammation of multiple organs, including the gastrointestinal tract, lung, and endocrine organs. We developed a dual variable domain immunoglobulin of anti-CTLA4 antibody (anti-CTLA4 DVD, where CTLA4 is defined as cytotoxic T lymphocyte–associated antigen-4) possessing an outer tumor-specific antigen-binding site engineered to shield the inner anti-CTLA4–binding domain. Upon reaching the tumor, the outer domain was cleaved by membrane type-serine protease 1 (MT-SP1) present in the tumor microenvironment, leading to enhanced localization of CTLA4 blockade. Anti-CTLA4 DVD markedly reduced multiorgan immune toxicity by preserving tissue-resident Tregs in Rag 1–/– mice that received naive donor CD4+ T cells from WT C57BL/6j mice. Moreover, anti-CTLA4 DVD induced potent antitumor effects by decreasing tumor-infiltrating Tregs and increasing the infiltration of antigen-specific CD8+ T lymphocytes in TRAMP-C2–bearing C57BL/6j mice. Treg depletion was mediated through the antibody-dependent cellular cytotoxicity (ADCC) mechanism, as anti-CTLA4 without the FcγR-binding portion (anti-CTLA4 DANA) spared Tregs, preventing treatment-induced toxicities. In summary, our results demonstrate an approach to anti-CTLA4 blockade that depletes tumor-infiltrating, but not tissue-resident, Tregs, preserving antitumor effects while minimizing toxicity. Thus, our tumor-conditional anti-CTLA4 DVD provides an avenue for uncoupling antitumor efficacy from immunotherapy-induced toxicities.

Authors

Chien-Chun Steven Pai, Donald M. Simons, Xiaoqing Lu, Michael Evans, Junnian Wei, Yung-hua Wang, Mingyi Chen, John Huang, Chanhyuk Park, Anthony Chang, Jiaxi Wang, Susan Westmoreland, Christine Beam, Dave Banach, Diana Bowley, Feng Dong, Jane Seagal, Wendy Ritacco, Paul L. Richardson, Soumya Mitra, Grace Lynch, Pete Bousquet, John Mankovich, Gillian Kingsbury, Lawrence Fong

×

Subdominance and poor intrinsic immunogenicity limit humoral immunity targeting influenza HA-stem
Hyon-Xhi Tan, … , Stephen J. Kent, Adam K. Wheatley
Hyon-Xhi Tan, … , Stephen J. Kent, Adam K. Wheatley
Published December 6, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI123366.
View: Text | PDF

Subdominance and poor intrinsic immunogenicity limit humoral immunity targeting influenza HA-stem

  • Text
  • PDF
Abstract

Both natural influenza infection and current seasonal influenza vaccines primarily induce neutralising antibody responses against highly diverse epitopes within the “head” of the viral hemagglutinin (HA) protein. There is increasing interest on redirecting immunity towards the more conserved HA-stem or stalk as a means to broaden protective antibody responses. Here we examined HA-stem-specific B cell and T-follicular helper (Tfh) cell responses in the context of influenza infection and immunisation in mouse and monkey models. We found that during infection the stem domain was immunologically subdominant to the head in terms of serum antibody production and antigen-specific B and Tfh responses. Similarly, we found HA-stem immunogens were poorly immunogenic compared to the full-length HA with abolished sialic acid binding activity, with limiting Tfh elicitation a potential constraint to the induction or boosting of anti-stem immunity by vaccination. Finally, we confirm that currently licensed seasonal influenza vaccines can boost pre-existing memory responses against the HA-stem in humans. An increased understanding of the immune dynamics surrounding the HA-stem is essential to inform the design of next-generation influenza vaccines for broad and durable protection.

Authors

Hyon-Xhi Tan, Sinthujan Jegaskanda, Jennifer A. Juno, Robyn Esterbauer, Julius Wong, Hannah G. Kelly, Yi Liu, Danielle Tilmanis, Aeron C. Hurt, Jonathan W. Yewdell, Stephen J. Kent, Adam K. Wheatley

×

Loss of ARHGEF1 causes a human primary antibody deficiency
Amine Bouafia, … , Eric Oksenhendler, Sven Kracker
Amine Bouafia, … , Eric Oksenhendler, Sven Kracker
Published December 6, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI120572.
View: Text | PDF

Loss of ARHGEF1 causes a human primary antibody deficiency

  • Text
  • PDF
Abstract

ARHGEF1 is a RhoA-specific guanine nucleotide exchange factor expressed in hematopoietic cells. We used whole-exome sequencing to identify compound heterozygous mutations in ARHGEF1, resulting in the loss of ARHGEF1 protein expression in two primary-antibody-deficient siblings presenting with recurrent severe respiratory tract infections and bronchiectasis. Both ARHGEF1-deficient patients showed an abnormal B cell immunophenotype, with a deficiency in marginal-zone and memory B cells and an increased frequency of transitional B cells. Furthermore, the patients’ blood contained immature myeloid cells. Analysis of a mediastinal lymph node from one patient highlighted the small size of the germinal centres and an abnormally high plasma cell content. On the molecular level, T and B lymphocytes from both patients displayed low RhoA activity and low steady-state actin polymerization (even after stimulation of lysophospholipid receptors). As a consequence of disturbed regulation of the RhoA downstream target ROCK, the patients’ lymphocytes failed to efficiently restrain AKT phosphorylation. Enforced ARHGEF1 expression or drug-induced activation of RhoA in patients’ cells corrected the impaired actin polymerization and AKT regulation. Our results indicate that ARHGEF1 activity in human lymphocytes is involved in controlling actin cytoskeleton dynamics, restraining PI3K/AKT signalling, and confining B lymphocytes and myelocytes within their dedicated functional environment.

Authors

Amine Bouafia, Sébastien Lofek, Julie Bruneau, Loïc Chentout, Hicham Lamrini, Amélie Trinquand, Marie-Céline Deau, Lucie Heurtier, Véronique Meignin, Capucine Picard, Elizabeth Macintyre, Olivier Alibeu, Marc Bras, Thierry Jo Molina, Marina Cavazzana, Isabelle André-Schmutz, Anne Durandy, Alain Fischer, Eric Oksenhendler, Sven Kracker

×

Fc-dependent functions are redundant to efficacy of anti-HIV antibody PGT121 in macaques
Matthew S. Parsons, … , Miles P. Davenport, Stephen J. Kent
Matthew S. Parsons, … , Miles P. Davenport, Stephen J. Kent
Published November 26, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI122466.
View: Text | PDF

Fc-dependent functions are redundant to efficacy of anti-HIV antibody PGT121 in macaques

  • Text
  • PDF
Abstract

A considerable body of evidence suggests that Fc-dependent functions improve the capacity of broadly neutralizing antibodies (BnAbs) to protect against and control HIV-1 infection. This phenomenon, however, has not been formally tested in robust cell-associated macaque simian-human immunodeficiency virus (SHIV) models with newer-generation BnAbs. We studied both the WT BnAb PGT121 and a LALA mutant of PGT121 (which has impaired Fc-dependent functions) for their ability to protect pigtail macaques from an i.v. high-dose cell-associated SHIVSF162P3 challenge. We found that both WT and LALA PGT121 completely protected all 12 macaques studied. Further, partial depletion of NK cells, key mediators of Fc-dependent functions, did not abrogate the protective efficacy of PGT121 in 6 macaques. Additionally, in animals with established SHIVSF162P3 infection, SHIV viremia levels were equally rapidly reduced by LALA and WT PGT121. Our studies suggest that the potent neutralizing capacity of PGT121 renders the Fc-dependent functions of the Ab at least partially redundant. These findings have implications for Ab-mediated protection from and control of HIV-1 infection.

Authors

Matthew S. Parsons, Wen Shi Lee, Anne B. Kristensen, Thakshila Amarasena, Georges Khoury, Adam K. Wheatley, Arnold Reynaldi, Bruce D. Wines, P. Mark Hogarth, Miles P. Davenport, Stephen J. Kent

×

Spec-seq unveils transcriptional subpopulations of antibody-secreting cells following influenza vaccination
Karlynn E. Neu, … , Aly A. Khan, Patrick C. Wilson
Karlynn E. Neu, … , Aly A. Khan, Patrick C. Wilson
Published November 19, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI121341.
View: Text | PDF

Spec-seq unveils transcriptional subpopulations of antibody-secreting cells following influenza vaccination

  • Text
  • PDF
Abstract

Vaccines are among the most effective public health tools for combating certain infectious diseases such as influenza. The role of the humoral immune system in vaccine-induced protection is widely appreciated; however, our understanding of how antibody specificities relate to B cell function remains limited due to the complexity of polyclonal antibody responses. To address this, we developed the Spec-seq framework, which allows for simultaneous monoclonal antibody (mAb) characterization and transcriptional profiling from the same single cell. Here, we present the first application of the Spec-seq framework, which we applied to human plasmablasts after influenza vaccination in order to characterize transcriptional differences governed by B cell receptor (BCR) isotype and vaccine reactivity. Our analysis did not find evidence of long-term transcriptional specialization between plasmablasts of different isotypes. However, we did find enhanced transcriptional similarity between clonally related B cells, as well as distinct transcriptional signatures ascribed by BCR vaccine recognition. These data suggest IgG and IgA vaccine–positive plasmablasts are largely similar, whereas IgA vaccine–negative cells appear to be transcriptionally distinct from conventional, terminally differentiated, antigen-induced peripheral blood plasmablasts.

Authors

Karlynn E. Neu, Jenna J. Guthmiller, Min Huang, Jennifer La, Marcos C. Vieira, Kangchon Kim, Nai-Ying Zheng, Mario Cortese, Micah E. Tepora, Natalie J. Hamel, Karla Thatcher Rojas, Carole Henry, Dustin Shaw, Charles L. Dulberger, Bali Pulendran, Sarah Cobey, Aly A. Khan, Patrick C. Wilson

×

TNF/TNFR axis promotes pyrin inflammasome activation and distinctly modulates pyrin inflammasomopathy
Deepika Sharma, … , Peter Vogel, Thirumala-Devi Kanneganti
Deepika Sharma, … , Peter Vogel, Thirumala-Devi Kanneganti
Published November 19, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI121372.
View: Text | PDF

TNF/TNFR axis promotes pyrin inflammasome activation and distinctly modulates pyrin inflammasomopathy

  • Text
  • PDF
Abstract

Pyrin is an inflammasome sensor that promotes caspase-1–mediated pyroptotic cell death and maturation of proinflammatory cytokines IL-1β and IL-18. Familial Mediterranean fever (FMF), an autoinflammatory disorder, is associated with mutations in the gene encoding pyrin (MEFV). FMF-knockin (FMF-KI) mice that express chimeric pyrin protein with FMF mutation (MefvV726A/V726A) exhibit an autoinflammatory disorder mediated by autoactivation of the pyrin inflammasome. Increase in the levels of TNF are observed in FMF-KI mice, and many features of FMF overlap with the autoinflammatory disorder associated with TNF receptor signaling. In this study, we assessed the contribution of TNF signaling to pyrin inflammasome activation and its consequent role in distinct FMF pathologies. TNF signaling promoted the expression of pyrin in response to multiple stimuli and was required for inflammasome activation in response to canonical pyrin stimuli and in myeloid cells from FMF-KI mice. TNF signaling promoted systemic wasting, anemia, and neutrophilia in the FMF-KI mice. Further, TNF-induced pathology was induced specifically through the TNFR1 receptor, while TNFR2-mediated signaling was distinctly protective in colitis and ankle joint inflammation. Overall, our data show that TNF is a critical modulator of pyrin expression, inflammasome activation, and pyrin-inflammasomopathy. Further, specific blockade of TNFR1 or activation of TNFR2 could provide substantial protection against FMF pathologies.

Authors

Deepika Sharma, Ankit Malik, Clifford Guy, Peter Vogel, Thirumala-Devi Kanneganti

×
  • ←
  • 1
  • 2
  • 3
  • …
  • 73
  • 74
  • →
Exosome delivery promotes allograft rejection
Quan Lui and colleagues reveal that delivery of donor MHC-containing exosomes from donor DCs to recipient DCs drive allograft-targeting immune responses…
Published June 27, 2016
Scientific Show StopperImmunology
Thumb showstopper liu morelli fig6a 600dpi ms 84577

Helminth co-infection exacerbates tuberculosis
Leticia Monin and colleagues provide insight how helminth co-infection drives increased susceptibility to severe tuberculosis...
Published November 16, 2015
Scientific Show StopperImmunology
Thumb fig 2b ss

Directing T cell traffic
Yanping Huang and colleagues demonstrate that CRK and CRKL regulate T cell trafficking and T cells lacking these adapter proteins do not home to sites of inflammation….
Published January 26, 2015
Scientific Show StopperImmunology
Thumb thumb
Advertisement
Follow JCI: Facebook logo white Twitter logo v2 Rss icon
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts