Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication

AIDS/HIV

  • 94 Articles
  • 2 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 9
  • 10
  • Next →
High-fat diet exacerbates SIV pathogenesis and accelerates disease progression
Tianyu He, … , Cristian Apetrei, Ivona Pandrea
Tianyu He, … , Cristian Apetrei, Ivona Pandrea
Published November 11, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI121208.
View: Text | PDF

High-fat diet exacerbates SIV pathogenesis and accelerates disease progression

  • Text
  • PDF
Abstract

Consuming a high-fat diet (HFD) is a risk factor for obesity and diabetes; both of these diseases are also associated with systemic inflammation, similar to HIV infection. A HFD induces intestinal dysbiosis and impairs liver function and coagulation, with a potential negative impact on HIV/SIV pathogenesis. We administered a HFD rich in saturated fats and cholesterol to nonpathogenic (African green monkeys) and pathogenic (pigtailed macaques) SIV hosts. The HFD had a negative impact on SIV disease progression in both species. Thus, increased cell-associated SIV DNA and RNA occurred in the HFD-receiving nonhuman primates, indicating a potential reservoir expansion. The HFD induced prominent immune cell infiltration in the adipose tissue, an important SIV reservoir, and heightened systemic immune activation and inflammation, altering the intestinal immune environment and triggering gut damage and microbial translocation. Furthermore, HFD altered lipid metabolism and HDL oxidation and also induced liver steatosis and fibrosis. These metabolic disturbances triggered incipient atherosclerosis and heightened cardiovascular risk in the SIV-infected HFD-receiving nonhuman primates. Our study demonstrates that dietary intake has a discernable impact on the natural history of HIV/SIV infections and suggests that dietary changes can be used as adjuvant approaches for HIV-infected subjects, to reduce inflammation and the risk of non-AIDS comorbidities and possibly other infectious diseases.

Authors

Tianyu He, Cuiling Xu, Noah Krampe, Stephanie M. Dillon, Paola Sette, Elizabeth Falwell, George S. Haret-Richter, Tiffany Butterfield, Tammy L. Dunsmore, William M. McFadden Jr., Kathryn J. Martin, Benjamin B. Policicchio, Kevin D. Raehtz, Ellen P. Penn, Russell P. Tracy, Ruy M. Ribeiro, Daniel N. Frank, Cara C. Wilson, Alan L. Landay, Cristian Apetrei, Ivona Pandrea

×

In vivo delivery of synthetic DNA-encoded antibodies induces broad HIV-1-neutralizing activity
Megan C. Wise, … , Laurent Humeau, David B. Weiner
Megan C. Wise, … , Laurent Humeau, David B. Weiner
Published November 7, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI132779.
View: Text | PDF

In vivo delivery of synthetic DNA-encoded antibodies induces broad HIV-1-neutralizing activity

  • Text
  • PDF
Abstract

Interventions to prevent HIV-1 infection and alternative tools in HIV cure therapy remain pressing goals. Recently, numerous broadly neutralizing HIV-1 monoclonal antibodies (bNAbs) have been developed which possess the characteristics necessary for potential prophylactic or therapeutic approaches. However, formulation complexities especially for multi-antibody deliveries, long infusion times, and production issues could limit the use of these bNAbs when deployed globally impacting their potential application. Here, we describe an approach utilizing synthetic DNA-encoded monoclonal antibodies (dMAbs) for direct in vivo production of prespecified neutralizing activity. We designed 16 different bNAbs as dMAbs cassettes and studied their activity in small and large animals. Sera from animals administered dMAbs neutralized multiple HIV-1 isolates with similar activity to their parental recombinant MAbs. Delivery of multiple dMAbs to a single animal led to increased neutralization breadth. Two dMAbs, PGDM1400 and PGT121, were advanced into non-human primates for study. High peak circulating levels (between 6-34µg/ml) of these dMAbs were measured and the sera of all animals displayed broad neutralizing activity. The dMAb approach provides an important local delivery platform for the in vivo generation of HIV-1 bNAbs and for other infectious disease antibodies.

Authors

Megan C. Wise, Ziyang Xu, Edgar Tello-Ruiz, Charles Beck, Aspen Trautz, Ami Patel, Sarah T.C. Elliott, Neethu Chokkalingam, Sophie Kim, Melissa G. Kerkau, Kar Muthumani, Jingjing Jiang, Paul Fisher, Stephany J. Ramos, Trevor R.F. Smith, Janess Mendoza, Kate E. Broderick, David C. Montefiori, Guido Ferrari, Daniel W. Kulp, Laurent Humeau, David B. Weiner

×

SIV-specific CD8+ T cells are clonotypically distinct across lymphoid and mucosal tissues
Carly E. Starke, … , David A. Price, Jason M. Brenchley
Carly E. Starke, … , David A. Price, Jason M. Brenchley
Published October 29, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI129161.
View: Text | PDF

SIV-specific CD8+ T cells are clonotypically distinct across lymphoid and mucosal tissues

  • Text
  • PDF
Abstract

CD8+ T cell responses are necessary for immune control of simian immunodeficiency virus (SIV). However, the key parameters that dictate antiviral potency remain elusive, conceivably because most studies to date have been restricted to analyses of circulating CD8+ T cells. We conducted a detailed clonotypic, functional, and phenotypic survey of SIV-specific CD8+ T cells across multiple anatomical sites in chronically infected rhesus macaques with high (> 10,000 copies/mL plasma) or low burdens of viral RNA (< 10,000 copies/mL plasma). No significant differences in response magnitude were identified across anatomical compartments. Rhesus macaques with low viral loads (VLs) harbored higher frequencies of polyfunctional CXCR5+ SIV-specific CD8+ T cells in various lymphoid tissues and higher proportions of unique Gag-specific CD8+ T cell clonotypes in the mesenteric lymph nodes relative to rhesus macaques with high VLs. In addition, public Gag-specific CD8+ T cell clonotypes were more commonly shared across distinct anatomical sites than the corresponding private clonotypes, which tended to form tissue-specific repertoires, especially in the peripheral blood and the gastrointestinal tract. Collectively, these data suggest that functionality and tissue localization are important determinants of CD8+ T cell-mediated efficacy against SIV.

Authors

Carly E. Starke, Carol L. Vinton, Kristin Ladell, James E. McLaren, Alexandra M. Ortiz, Joseph C. Mudd, Jacob K. Flynn, Stephen H. Lai, Fan Wu, Vanessa M. Hirsch, Samuel Darko, Daniel C. Douek, David A. Price, Jason M. Brenchley

×

Antibody Fc effector functions and IgG3 associate with decreased HIV-1 risk
Scott D. Neidich, … , Peter B. Gilbert, Georgia D. Tomaras
Scott D. Neidich, … , Peter B. Gilbert, Georgia D. Tomaras
Published October 7, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI126391.
View: Text | PDF

Antibody Fc effector functions and IgG3 associate with decreased HIV-1 risk

  • Text
  • PDF
Abstract

HVTN 505 is a preventative vaccine efficacy trial testing DNA followed by recombinant adenovirus serotype 5 (rAd5) in circumcised, Ad5-seronegative men and transgendered persons who have sex with men in the United States. Identified immune correlates of lower HIV-1 risk and a virus sieve analysis revealed that, despite lacking overall efficacy, vaccine-elicited responses exerted pressure on infecting HIV-1 viruses. To interrogate the mechanism of the antibody correlate of HIV-1 risk, we examined antigen-specific antibody recruitment of Fcγ receptors (FcγRs), antibody-dependent cellular phagocytosis (ADCP), and the role of anti-envelope (anti-Env) IgG3. In a prespecified immune correlates analysis, antibody-dependent monocyte phagocytosis and antibody binding to FcγRIIa correlated with decreased HIV-1 risk. Follow-up analyses revealed that anti-Env IgG3 breadth correlated with reduced HIV-1 risk, anti-Env IgA negatively modified infection risk by Fc effector functions, and that vaccine recipients with a specific FcγRIIa single-nucleotide polymorphism locus had a stronger correlation with decreased HIV-1 risk when ADCP, Env-FcγRIIa, and IgG3 binding were high. Additionally, FcγRIIa engagement correlated with decreased viral load setpoint in vaccine recipients who acquired HIV-1. These data support a role for vaccine-elicited anti–HIV-1 Env IgG3, antibody engagement of FcRs, and phagocytosis as potential mechanisms for HIV-1 prevention.

Authors

Scott D. Neidich, Youyi Fong, Shuying S. Li, Daniel E. Geraghty, Brian D. Williamson, William Chad Young, Derrick Goodman, Kelly E. Seaton, Xiaoying Shen, Sheetal Sawant, Lu Zhang, Allan C. deCamp, Bryan S. Blette, Mengshu Shao, Nicole L. Yates, Frederick Feely, Chul-Woo Pyo, Guido Ferrari, HVTN 505 Team, Ian Frank, Shelly T. Karuna, Edith M. Swann, John R. Mascola, Barney S. Graham, Scott M. Hammer, Magdalena E. Sobieszczyk, Lawrence Corey, Holly E. Janes, M. Juliana McElrath, Raphael Gottardo, Peter B. Gilbert, Georgia D. Tomaras

×

Glycan-dependent HIV-specific neutralizing antibodies bind to cells of uninfected individuals
Jana Blazkova, … , Susan Moir, Tae-Wook Chun
Jana Blazkova, … , Susan Moir, Tae-Wook Chun
Published October 7, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI125955.
View: Text | PDF

Glycan-dependent HIV-specific neutralizing antibodies bind to cells of uninfected individuals

  • Text
  • PDF
Abstract

A number of highly potent and broadly neutralizing antibodies (bNAbs) against the human immunodeficiency virus (HIV) have recently been shown to prevent transmission of the virus, suppress viral replication, and delay plasma viral rebound following discontinuation of antiretroviral therapy in animal models and infected humans. However, the degree and extent to which such bNAbs interact with primary lymphocytes have not been fully delineated. Here, we show that certain glycan-dependent bNAbs, such as PGT121 and PGT151, bind to B, activated T, and natural killer (NK) cells of HIV-infected and -uninfected individuals. Binding of these bNAbs, particularly PGT121 and PGT151, to activated CD4+ and CD8+ T cells was mediated by complex-type glycans and was abrogated by enzymatic inhibition of N-linked glycosylation. In addition, a short-term incubation of PGT151 and primary NK cells led to degranulation and cellular death. Our data suggest that the propensity of certain bNAbs to bind uninfected/bystander cells has the potential for unexpected outcomes in passive-transfer studies and underscore the importance of antibody screening against primary lymphocytes.

Authors

Jana Blazkova, Eric W. Refsland, Katherine E. Clarridge, Victoria Shi, J. Shawn Justement, Erin D. Huiting, Kathleen R. Gittens, Xuejun Chen, Stephen D. Schmidt, Cuiping Liu, Nicole Doria-Rose, John R. Mascola, Alonso Heredia, Susan Moir, Tae-Wook Chun

×

DNA priming and gp120 boosting induces HIV-specific antibodies in a randomized clinical trial
Nadine G. Rouphael, … , Michael C. Keefer, the HVTN 105 Protocol Team and the NIAID HIV Vaccine Trials Network
Nadine G. Rouphael, … , Michael C. Keefer, the HVTN 105 Protocol Team and the NIAID HIV Vaccine Trials Network
Published September 30, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI128699.
View: Text | PDF

DNA priming and gp120 boosting induces HIV-specific antibodies in a randomized clinical trial

  • Text
  • PDF
Abstract

BACKGROUND RV144 is the only preventive HIV vaccine regimen demonstrating efficacy in humans. Attempting to build upon RV144 immune responses, we conducted a phase 1, multicenter, randomized, double-blind trial to assess the safety and immunogenicity of regimens substituting the DNA-HIV-PT123 (DNA) vaccine for ALVAC-HIV in different sequences or combinations with AIDSVAX B/E (protein).METHODS One hundred and four HIV-uninfected participants were randomized to 4 treatment groups (T1, T2, T3, and T4) and received intramuscular injections at 0, 1, 3, and 6 months (M): T1 received protein at M0 and M1 and DNA at M3 and M6; T2 received DNA at M0 and M1 and protein at M3 and M6; T3 received DNA at M0, M1, M3, and M6 with protein coadministered at M3 and M6; and T4 received protein and DNA coadministered at each vaccination visit.RESULTS All regimens were well tolerated. Antibodies binding to gp120 and V1V2 scaffold were observed in 95%–100% of participants in T3 and T4, two weeks after final vaccination at high magnitude. While IgG3 responses were highest in T3, a lower IgA/IgG ratio was observed in T4. Binding antibodies persisted at 12 months in 35%–100% of participants. Antibody-dependent cell-mediated cytotoxicity and tier 1 neutralizing-antibody responses had higher response rates for T3 and T4, respectively. CD4+ T cell responses were detectable in all treatment groups (32%–64%) without appreciable CD8+ T cell responses.CONCLUSION The DNA/protein combination regimens induced high-magnitude and long-lasting HIV V1V2–binding antibody responses, and early coadministration of the 2 vaccines led to a more rapid induction of these potentially protective responses.TRIAL REGISTRATION ClinicalTrials.gov NCT02207920.FUNDING National Institute of Allergy and Infectious Diseases (NIAID) grants UM1 AI068614, UM1 AI068635, UM1 AI068618, UM1 AI069511, UM1 AI069470, UM1 AI069534, P30 AI450008, UM1 AI069439, UM1 AI069481, and UM1 AI069496; the National Center for Advancing Translational Sciences, NIH (grant UL1TR001873); and the Bill & Melinda Gates Foundation (grant OPP52845).

Authors

Nadine G. Rouphael, Cecilia Morgan, Shuying S. Li, Ryan Jensen, Brittany Sanchez, Shelly Karuna, Edith Swann, Magdalena E. Sobieszczyk, Ian Frank, Gregory J. Wilson, Hong-Van Tieu, Janine Maenza, Aliza Norwood, James Kobie, Faruk Sinangil, Giuseppe Pantaleo, Song Ding, M. Juliana McElrath, Stephen C. De Rosa, David C. Montefiori, Guido Ferrari, Georgia D. Tomaras, Michael C. Keefer, the HVTN 105 Protocol Team and the NIAID HIV Vaccine Trials Network

×

Mechanisms of reactivation of latent tuberculosis infection due to SIV co-infection
Allison N. Bucşan, … , Shabaana A. Khader, Deepak Kaushal
Allison N. Bucşan, … , Shabaana A. Khader, Deepak Kaushal
Published September 3, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI125810.
View: Text | PDF

Mechanisms of reactivation of latent tuberculosis infection due to SIV co-infection

  • Text
  • PDF
Abstract

HIV is a major driver of Tuberculosis (TB) reactivation. Depletion of CD4+ T cells is assumed to be the basis behind TB reactivation in individuals with latent tuberculosis Infection (LTBI) co-infected with human immunodeficiency virus (HIV). Non-human primates (NHPs) coinfected with a mutant simian immunodeficiency virus (SIVΔGY), that does not cause depletion of tissue CD4+ T cells during infection, failed to reactivate TB. To investigate the contribution of CD4+ T cell depletion relative to other mechanisms of SIV-induced reactivation of LTBI, we used CD4R1 antibody to deplete CD4+ T cells in animals with LTBI without lentiviral infection. We showed that the mere depletion of CD4+ T cells during LTBI was insufficient in generating reactivation of LTBI. Instead, direct cytopathic effects of SIV resulting in chronic immune activation, along with the altered effector T cell phenotypes and dysregulated T cell homeostasis, were likely mediators of reactivation of LTBI. These results revealed important implications for controlling TB in the HIV co-infected individuals.

Authors

Allison N. Bucşan, Ayan Chatterjee, Dhiraj K. Singh, Taylor W. Foreman, Tae-Hyung Lee, Breanna Threeton, Melanie G. Kirkpatrick, Mushtaq Ahmed, Nadia Golden, Xavier Alvarez, James A. Hoxie, Smriti Mehra, Jyothi Rengarajan, Shabaana A. Khader, Deepak Kaushal

×

HIV-1 in lymph nodes is maintained by cellular proliferation during antiretroviral therapy
William R. McManus, … , John M. Coffin, Mary F. Kearney
William R. McManus, … , John M. Coffin, Mary F. Kearney
Published July 30, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI126714.
View: Text | PDF

HIV-1 in lymph nodes is maintained by cellular proliferation during antiretroviral therapy

  • Text
  • PDF
Abstract

To investigate the possibility that HIV-1 replication in lymph nodes sustains the reservoir during ART, we looked for evidence of viral replication in 5 donors after up to 13 years of viral suppression. We characterized proviral populations in lymph nodes and peripheral blood before and during ART, evaluated the levels of viral RNA expression in single lymph node and blood cells, and characterized the proviral integration sites in paired lymph node and blood samples. Proviruses with identical sequences, identical integration sites, and similar levels of RNA expression were found in lymph nodes and blood samples collected during ART, and no single sequence with significant divergence from the pretherapy population was present in either blood or lymph nodes. These findings show that all detectable persistent HIV-1 infection is consistent with maintenance in lymph nodes by clonal proliferation of cells infected before ART and not by ongoing viral replication during ART.

Authors

William R. McManus, Michael J. Bale, Jonathan Spindler, Ann Wiegand, Andrew Musick, Sean C. Patro, Michele D. Sobolewski, Victoria K. Musick, Elizabeth M. Anderson, Joshua C. Cyktor, Elias K. Halvas, Wei Shao, Daria Wells, Xiaolin Wu, Brandon F. Keele, Jeffrey M. Milush, Rebecca Hoh, John W. Mellors, Stephen H. Hughes, Steven G. Deeks, John M. Coffin, Mary F. Kearney

×

Structure-guided drug design identifies a BRD4-selective small molecule that suppresses HIV
Qingli Niu, … , Jia Zhou, Haitao Hu
Qingli Niu, … , Jia Zhou, Haitao Hu
Published July 22, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI120633.
View: Text | PDF

Structure-guided drug design identifies a BRD4-selective small molecule that suppresses HIV

  • Text
  • PDF
Abstract

HIV integrates its provirus into the host genome and establishes latent infection. Antiretroviral therapy (ART) can control HIV viremia, but cannot eradicate or cure the virus. Approaches targeting host epigenetic machinery to repress HIV, leading to an aviremic state free of ART, are needed. Bromodomain and extraterminal (BET) family protein BRD4 is an epigenetic reader involved in HIV transcriptional regulation. Using structure-guided drug design, we identified a small molecule (ZL0580) that induced epigenetic suppression of HIV via BRD4. We showed that ZL0580 induced HIV suppression in multiple in vitro and ex vivo cell models. Combination treatment of cells of aviremic HIV-infected individuals with ART and ZL0580 revealed that ZL0580 accelerated HIV suppression during ART and delayed viral rebound after ART cessation. Mechanistically different from the BET/BRD4 pan-inhibitor JQ1, which nonselectively binds to BD1 and BD2 domains of all BET proteins, ZL0580 selectively bound to BD1 domain of BRD4. We further demonstrate that ZL0580 induced HIV suppression by inhibiting Tat transactivation and transcription elongation as well as by inducing repressive chromatin structure at the HIV promoter. Our findings establish a proof of concept for modulation of BRD4 to epigenetically suppress HIV and provide a promising chemical scaffold for the development of probes and/or therapeutic agents for HIV epigenetic silencing.

Authors

Qingli Niu, Zhiqing Liu, Edrous Alamer, Xiuzhen Fan, Haiying Chen, Janice Endsley, Benjamin B. Gelman, Bing Tian, Jerome H. Kim, Nelson L. Michael, Merlin L. Robb, Jintanat Ananworanich, Jia Zhou, Haitao Hu

×

Persistent HIV-infected cells in cerebrospinal fluid are associated with poorer neurocognitive performance
Serena Spudich, … , Alyssa Vecchio, John W. Mellors
Serena Spudich, … , Alyssa Vecchio, John W. Mellors
Published July 15, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI127413.
View: Text | PDF

Persistent HIV-infected cells in cerebrospinal fluid are associated with poorer neurocognitive performance

  • Text
  • PDF
Abstract

BACKGROUND Persistence of HIV in sanctuary sites despite antiretroviral therapy (ART) presents a barrier to HIV remission and may affect neurocognitive function. We assessed HIV persistence in cerebrospinal fluid (CSF) and associations with inflammation and neurocognitive performance during long-term ART.METHODS Participants enrolled in the AIDS Clinical Trials Group (ACTG) HIV Reservoirs Cohort Study (A5321) underwent concurrent lumbar puncture, phlebotomy, and neurocognitive assessment. Cell-associated HIV DNA and HIV RNA (CA-DNA, CA-RNA) were measured by quantitative PCR (qPCR). in peripheral blood mononuclear cells (PBMCs) and in cell pellets from CSF. In CSF supernatant and blood plasma, cell-free HIV RNA was quantified by qPCR with single copy sensitivity, and inflammatory biomarkers were measured by enzyme immunoassay.RESULTS Sixty-nine participants (97% male, median age 50 years, CD4 696 cells/mm3, plasma HIV RNA <100 copies/mL) were assessed after a median 8.6 years of ART. In CSF, cell-free RNA was detected in 4%, CA-RNA in 9%, and CA-DNA in 48% of participants (median level 2.1 copies/103 cells). Detection of cell-free CSF HIV RNA was associated with higher plasma HIV RNA (P = 0.007). CSF inflammatory biomarkers did not correlate with HIV persistence measures. Detection of CSF CA-DNA HIV was associated with worse neurocognitive outcomes including global deficit score (P = 0.005), even after adjusting for age and nadir CD4 count.CONCLUSION HIV-infected cells persist in CSF in almost half of individuals on long-term ART, and their detection is associated with poorer neurocognitive performance.FUNDING This observational study, AIDS Clinical Trials Group (ACTG) HIV Reservoirs Cohort Study (A5321), was supported by the National Institutes of Health (NIAID and NIMH).

Authors

Serena Spudich, Kevin R. Robertson, Ronald J. Bosch, Rajesh T. Gandhi, Joshua C. Cyktor, Hanna Mar, Bernard J. Macatangay, Christina M. Lalama, Charles Rinaldo, Ann C. Collier, Catherine Godfrey, Joseph J. Eron, Deborah McMahon, Jana L. Jacobs, Dianna Koontz, Evelyn Hogg, Alyssa Vecchio, John W. Mellors

×
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 9
  • 10
  • Next →
Insight into CD8+ T cell expansion during HIV-1 infection
Souheil-Antoine Younes and colleagues provide evidence that IL-15 is involved in the expansion of CD8+ T cells in chronic HIV infection...
Published June 20, 2016
Scientific Show StopperAIDS/HIV

Designer proteins to hunt and kill latent HIV-1
Julia Sung, Joy Pickeral, Liquin Liu and colleagues developed designer proteins that detect and destroy rare populations of HIV-infected cells…
Published September 28, 2015
Scientific Show StopperAIDS/HIV
Advertisement
Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts