Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication
Dual-Affinity Re-Targeting proteins direct T cell–mediated cytolysis of latently HIV-infected cells
Julia A.M. Sung, … , David M. Margolis, Guido Ferrari
Julia A.M. Sung, … , David M. Margolis, Guido Ferrari
Published November 2, 2015; First published September 28, 2015
Citation Information: J Clin Invest. 2015;125(11):4077-4090. https://doi.org/10.1172/JCI82314.
View: Text | PDF
Categories: Research Article AIDS/HIV

Dual-Affinity Re-Targeting proteins direct T cell–mediated cytolysis of latently HIV-infected cells

  • Text
  • PDF
Abstract

Enhancement of HIV-specific immunity is likely required to eliminate latent HIV infection. Here, we have developed an immunotherapeutic modality aimed to improve T cell–mediated clearance of HIV-1–infected cells. Specifically, we employed Dual-Affinity Re-Targeting (DART) proteins, which are bispecific, antibody-based molecules that can bind 2 distinct cell-surface molecules simultaneously. We designed DARTs with a monovalent HIV-1 envelope-binding (Env-binding) arm that was derived from broadly binding, antibody-dependent cellular cytotoxicity–mediating antibodies known to bind to HIV-infected target cells coupled to a monovalent CD3 binding arm designed to engage cytolytic effector T cells (referred to as HIVxCD3 DARTs). Thus, these DARTs redirected polyclonal T cells to specifically engage with and kill Env-expressing cells, including CD4+ T cells infected with different HIV-1 subtypes, thereby obviating the requirement for HIV-specific immunity. Using lymphocytes from patients on suppressive antiretroviral therapy (ART), we demonstrated that DARTs mediate CD8+ T cell clearance of CD4+ T cells that are superinfected with the HIV-1 strain JR-CSF or infected with autologous reservoir viruses isolated from HIV-infected–patient resting CD4+ T cells. Moreover, DARTs mediated CD8+ T cell clearance of HIV from resting CD4+ T cell cultures following induction of latent virus expression. Combined with HIV latency reversing agents, HIVxCD3 DARTs have the potential to be effective immunotherapeutic agents to clear latent HIV-1 reservoirs in HIV-infected individuals.

Authors

Julia A.M. Sung, Joy Pickeral, Liqin Liu, Sherry A. Stanfield-Oakley, Chia-Ying Kao Lam, Carolina Garrido, Justin Pollara, Celia LaBranche, Mattia Bonsignori, M. Anthony Moody, Yinhua Yang, Robert Parks, Nancie Archin, Brigitte Allard, Jennifer Kirchherr, JoAnn D. Kuruc, Cynthia L. Gay, Myron S. Cohen, Christina Ochsenbauer, Kelly Soderberg, Hua-Xin Liao, David Montefiori, Paul Moore, Syd Johnson, Scott Koenig, Barton F. Haynes, Jeffrey L. Nordstrom, David M. Margolis, Guido Ferrari

×

Figure 5

HIVxCD3 DARTs induce specific degranulation of CD8+ T cells.

Options: View larger image (or click on image) Download as PowerPoint
HIVxCD3 DARTs induce specific degranulation of CD8+ T cells.
(A–D) Schem...
(A–D) Schematic of gating strategy to identify live/CD3+CD8+CD107+ T cells after their incubation with HIV-1 BaL–infected target cells in the presence of DARTs for 6 hours. (E–G) Dot plots represent the percentage of live/CD3+CD8+CD107+ cells observed in the presence of 1 ng/ml of 4420xCD3 (E), 7B2xCD3 (F), or A32xCD3 (G). (H) Frequency of the CD3+CD4–CD8+CD107+ T cells observed in each of the 5 HIV-1 seronegative healthy donors after 6 hours of incubation with the autologous infected CD4+ T cells using the E/T ratio of 33:1. Each symbol represents the average of duplicate stimulations performed for each donor. The lines represent the mean ± SD. *P < 0.05 after Dunnett’s test for multiple comparisons.
Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts