Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication
GSK3β mediates muscle pathology in myotonic dystrophy
Karlie Jones, … , Nikolai A. Timchenko, Lubov T. Timchenko
Karlie Jones, … , Nikolai A. Timchenko, Lubov T. Timchenko
Published December 3, 2012; First published November 19, 2012
Citation Information: J Clin Invest. 2012;122(12):4461-4472. https://doi.org/10.1172/JCI64081.
View: Text | PDF
Categories: Research Article Muscle biology

GSK3β mediates muscle pathology in myotonic dystrophy

  • Text
  • PDF
Abstract

Myotonic dystrophy type 1 (DM1) is a complex neuromuscular disease characterized by skeletal muscle wasting, weakness, and myotonia. DM1 is caused by the accumulation of CUG repeats, which alter the biological activities of RNA-binding proteins, including CUG-binding protein 1 (CUGBP1). CUGBP1 is an important skeletal muscle translational regulator that is activated by cyclin D3–dependent kinase 4 (CDK4). Here we show that mutant CUG repeats suppress Cdk4 signaling by increasing the stability and activity of glycogen synthase kinase 3β (GSK3β). Using a mouse model of DM1 (HSALR), we found that CUG repeats in the 3′ untranslated region (UTR) of human skeletal actin increase active GSK3β in skeletal muscle of mice, prior to the development of skeletal muscle weakness. Inhibition of GSK3β in both DM1 cell culture and mouse models corrected cyclin D3 levels and reduced muscle weakness and myotonia in DM1 mice. Our data predict that compounds normalizing GSK3β activity might be beneficial for improvement of muscle function in patients with DM1.

Authors

Karlie Jones, Christina Wei, Polina Iakova, Enrico Bugiardini, Christiane Schneider-Gold, Giovanni Meola, James Woodgett, James Killian, Nikolai A. Timchenko, Lubov T. Timchenko

×

Figure 2

The expansion of CUG repeats increases GSK3β protein in skeletal muscle from HSALR mice.

Options: View larger image (or click on image) Download as PowerPoint
The expansion of CUG repeats increases GSK3β protein in skeletal muscle ...
(A) Levels of total GSK3α, GSK3β, cyclin D3, and actin were determined by Western blot analyses of total protein extracts from skeletal muscle (soleus) of HSALR mice (at 6 months of age) and extracts from matching WT mice. CRM, cross-reactive material. (B) Ratios of signals of GSK3β and cyclin D3, as presented in A, to actin. The standard deviations for 3 experiments are shown. (C) GSK3β is increased in skeletal muscle of 1-month-old HSALR mice. Protein extracts from skeletal muscle (gastroc) of 1-month-old WT and HSALR mice were analyzed by Western blot with antibodies to total GSK3β and re-probed with antibodies to actin. Shown are ratios of GSK3β signals, as presented in C, to actin. The standard deviations shown are based on 3 repeats. (D) CUGBP1 is increased in muscle of HSALR mice. Protein extracts from skeletal muscle (soleus) of age-matched HSALR and WT mice were analyzed by Western blot assay. The membrane was re-probed with antibodies to actin and stained with Coomassie blue to verify protein loading and integrity. (E) Ratios of CUGBP1 signals presented in D (as an average of 4 mutant and 2 WT mice) to actin signals. The standard deviations are shown for 3 experiments.
Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts