Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication
A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model
Rolf Postina, … , Fred van Leuven, Falk Fahrenholz
Rolf Postina, … , Fred van Leuven, Falk Fahrenholz
Published May 15, 2004
Citation Information: J Clin Invest. 2004;113(10):1456-1464. https://doi.org/10.1172/JCI20864.
View: Text | PDF | Erratum
Categories: Article Neuroscience

A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model

  • Text
  • PDF
Abstract

Alzheimer disease (AD) is characterized by excessive deposition of amyloid β-peptides (Aβ peptides) in the brain. In the nonamyloidogenic pathway, the amyloid precursor protein (APP) is cleaved by the α-secretase within the Aβ peptide sequence. Proteinases of the ADAM family (adisintegrin and metalloproteinase) are the main candidates as physiologically relevant α-secretases, but early lethality of knockout animals prevented a detailed analysis in neuronal cells. To overcome this restriction, we have generated transgenic mice that overexpress either ADAM10 or a catalytically inactive ADAM10 mutant. In this report we show that a moderate neuronal overexpression of ADAM10 in mice transgenic for human APP[V717I] increased the secretion of the neurotrophic soluble α-secretase–released N-terminal APP domain (APPsα), reduced the formation of Aβ peptides, and prevented their deposition in plaques. Functionally, impaired long-term potentiation and cognitive deficits were alleviated. Expression of mutant catalytically inactive ADAM10 led to an enhancement of the number and size of amyloid plaques in the brains of double-transgenic mice. The results provide the first in vivo evidence for a proteinase of the ADAM family as an α-secretase of APP, reveal activation of ADAM10 as a promising therapeutic target, and support the hypothesis that a decrease in α-secretase activity contributes to the development of AD.

Authors

Rolf Postina, Anja Schroeder, Ilse Dewachter, Juergen Bohl, Ulrich Schmitt, Elzbieta Kojro, Claudia Prinzen, Kristina Endres, Christoph Hiemke, Manfred Blessing, Pascaline Flamez, Antoine Dequenne, Emile Godaux, Fred van Leuven, Falk Fahrenholz

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
Characterization of ADAM10 transgenic mice. Immunohistochemical detectio...
Characterization of ADAM10 transgenic mice. Immunohistochemical detection of HA-tagged ADAM10 using the antibody Y-11. Cortex (A) and hippocampal (B) sections of ADAM10-mo transgenic animals and a nontransgenic control (FVB/N) are shown. Scale bars: 200 ∝m in A and 100 ∝m in B. (C) Quantitation of catalytically active ADAM10 protein levels. Enriched ADAM10 proteins from adult mouse brains were subjected to Western blot analysis and detected with an anti-ADAM10 antibody. The upper panel shows mature ADAM10 (<m) and the proform of ADAM10 (<p). The mature 62-kDa ADAM10 form was quantified using a 35S-labeled secondary antibody (lower panel).
Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts