

Supplementary Figure 1. Role of CD28 costimulation in vitro. The expression of CD80 and CD86 molecules was assessed by FACS analysis in two fresh preinfusion tissues available from Pt #2 (panel A) and Pt #1(panel B). In both cases monoclonal CD19⁺ tumor cells lacked CD80 and CD86 expression. Panel C illustrates that Epstein Barr Virus infected cells (LCLs) obtained from Pt # 1 expressed CD80 and CD86 molecules. Panel D shows NT, CAR.CD19^{ζ +} and CAR.CD19-28^{ζ +} T cells from Pt #1 co-cultured with autologous LCLs or autologous tumor cells (ratio 1 to 1). Both CAR.CD19^{ζ +} and CAR.CD19-28^{ζ +} T cells (expressing the native CD28 as shown in Fig. 1) proliferated in the presence of LCLs, while only CAR.CD19-28^{ζ +} T cells proliferated in response to tumor cells (magnification 10X). Thymidine incorporation at 72 h (panel E) and cell counts 1 week (panel F) post stimulation with LCLs or primary tumor cells confirmed that only CAR.CD19-28^{ζ +} T cells proliferated in response to LCLs. These data confirm that CD28 endodomain incorporated within the CAR is essential to provide co-stimulation when the tumor cells lack the expression of co-stimulatory molecules.

Supplementary Figure 2. Reactivation of CAR-modified T lymphocytes ex vivo. PBMCs were collected at 4-6 weeks after the first T-cell infusion and were stimulated ex vivo with immobilized OKT3/CD28 antibodies. Each symbol represents a single patient and the horizontal bars denote mean group values. Gray symbols indicate CAR.CD19 ζ^+ T-cell lines. Black symbols indicate CAR.CD19-28 ζ^+ T-cell lines. A significant increase in molecular signals after ex vivo activation was apparent only among CAR.CD19-28 ζ^+ cells.

Supplementary Figure 3. Relative contribution of CAR-transduced CD4 and CD8 subsets to expand T-cell populations at different postinfusion intervals. CD4⁺ and CD8⁺ T cells were FACS sorted (TCH Core Facility, Houston, TX) from freshly isolated PBMCs at 1, 2, 4 and 6 weeks postinfusion and DNA extracted for Q-PCR amplification. The relative percentage of CD4⁺ and CD8⁺ cells for patient #3 were 55% and 43% among CAR.CD19 ζ ⁺ T cells vs. 57% and 42% among CAR.CD19-28 ζ ⁺ T cells. For patient #5 the corresponding percentages were 7% and 90% for the CAR.CD19 ζ ⁺ T cells vs. 10% and 85% for CAR.CD19-28 ζ ⁺ T cells.

Supplementary Table 1. Clinical characteristics of treated patients											
Patient	Diagnosis	Age/Sex	Previous therapy	Disease status at T-cell	T-cell	Clinical					
no.				infusion	dose	outcome					
1	Stage IVA SLL with	53/M	Fludarabine,	Active disease (blood and	2×10 ⁷	Stable disease					
	history of EBV+ NHL		cyclophosphamide	cervical, axillary,	cells/m ²	10 mo;					
			and rituximab	retroperitoneal and inguinal		progressive					
				lymph nodes)		disease 6 mo					
						post 2 nd infusion					
2	Relapsed stage IVB	56/M	Multiagent	Active disease (cervical	2×10 ⁷	Progressive					
	follicular lymphoma with		chemotherapy with	lymph nodes)	cells/m ²	disease 5 wk					
	transformation to DLBCL		rituximab			post 1 st infusion					
3	Relapsed stage IIIB	46/M	Multiagent	Active disease	1×10 ⁸	Stable disease 3					
	DLBCL		chemotherapy with	(retroperitoneal lymph	cells/m ²	mo; progressive					
			rituximab	nodes)		disease 4 wk					
						post 2 nd infusion					

4	Relapsed/refractory	57/M	Multiagent	Active disease (cervical	1×10 ⁸	Progressive
	stage IIA DLBCL		chemotherapy with	and retroperitoneal lymph	cells/m ²	disease 6 wk
			rituximab, ASCT	nodes)		post 1 st infusion
5	Relapsed stage IVB	59/F	Multiagent	Active disease (muscle and	2×10 ⁸	Progressive
	follicular lymphoma with		chemotherapy with	skin)	cells/m ²	disease 6 wk
	transformation to DBLCL		rituximab, ASCT			after 1 st infusion
6	Relapsed primary central	49/M	Multiagent	Active disease (brain and	2×10 ⁸	Progressive
	nervous system DLBCL		chemotherapy with	retroperitoneum)	cells/m ²	disease 2 wk
	with systemic relapse		rituximab, ASCT			after 1 st infusion

SLL – Small lymphocytic lymphoma; DLBCL – Diffuse large B cell lymphoma; ASCT – autologous stem cell transplant.